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ABSTRACT: We describe a new coarse-grained reactive molecular dynamics model for associative polymer networks. Our model
combines a Tersoff bond-order potential for associative bond chemistry with a standard bead−spring model for molten polymers.
The resulting model captures the essential physics of chain dynamics, chain entanglement, and coordinated dynamic bonding and
can be tuned to capture a variety of associative bond kinetics. The many-body Tersoff Hamiltonian for dynamic bonding remains
valid in nonequilibrium flow conditions, unlike Monte Carlo methods based on equilibrium bond kinetics. We use this model to
simulate polymer melts with binary associative bonds of varying cohesive strength. We measure the gelation transition with
increasing association strength and identify a gel point at an associative bond strength ∼1kBT. We also assess how chain dynamics
and network viscoelasticity change as the degree of gelation increases and relate them to the microscopic kinetics of dynamic bond
exchange.

■ INTRODUCTION
Associating or dynamic polymer networks are topologically
adaptive elastomers formed through the assembly of
reconfigurable associative chemical bonds between polymer
chains.1 Nature is adept at harnessing such associative
interactions to drive biopolymers to form complex and
adaptive self-assembled structures.2 Associative bonds like
hydrogen bonds and π−π bonds are also common in many
commodity polymers such as polyamides3 like nylon4 and
Kevlar,5 where they dramatically alter polymer material
structure, thermomechanical properties, and processing.
Inspired by biopolymers in nature, many researchers are
working to incorporate associative bonds into commodity
polymer chains to create sustainable reprocessable polymers as
replacements for unrecyclable thermosets and thermoplas-
tic.1,6,7 Replacing strong covalent cross-links with thermor-
eversible associative bonds enables the creation of robust
networks that can be reprocessed at elevated temper-
atures.1,6−8 However, these same fluctuations in chain
connectivity produce complex chain dynamics and viscoelas-

ticity that are hard to describe in equilibrium and largely
unexplored in nonequilibrium processing conditions.9

Many experimental and theoretical studies have improved
our molecular understanding of associative polymer networks
in equilibrium. Analytic models based on mean-field scaling
laws like the reversible gelation model,10,11 sticky Rouse,12 and
sticky reptation13,14 can accurately fit experimentally observed
linear viscoelastic behavior in a wide variety of dynamic
networks. They reasonably work well for equilibrium systems
when the time and length scales associated with different
molecular processes are well-separated�associations are well-
spaced along chains�and the network structure is uniform
throughout the material.15 However, in many biological and
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synthetic systems of current interest, these assumptions do not
hold when sticker spacing is comparable to Kuhn length or the
strand is stiff.9 Current models are proving insufficient to relate
the viscoelastic properties of these networks to their underlying
molecular structures.9 Additionally, mean-field models average
over the fluctuations to predict an average structure and
dynamics, which fail to describe nonequilibrium systems.
Fluctuations can couple with flows to produce heterogeneous
dynamics and structures, giving rise to complex processing
behaviors.16

New models are needed to capture the complex processing
behavior, but the microscopic details of associative networks in
nonequilibrium conditions are difficult to access in experi-
ments. Many studies have turned to molecular simulations to
relate the molecular structure of networks to their viscoelastic
dynamics. Simulation studies model associative bond kinetics
through hybrid molecular dynamics (MD)/Monte Carlo
(MC) simulation17−21 and pure MC22−24 or MD meth-
ods.25−33 However, many of these models require making
prescriptive assumptions about associative kinetics and how
they behave in nonequilibrium flow conditions. For example,
models using MC steps to perform associative reactions
require user-specified reaction rates for the association and
disassociation processes. These are usually based on steady−
state equilibrium reactions, and it is not always clear how these
should be modified under nonequilibrium conditions. While
nonequilibrium MC methods are an active area of research,
rules for their use are not well-established, especially when
combined with MD simulations.17,34

To regulate the cluster size and bond directionality of
associative groups, researchers have developed MD approaches
that model associative functional groups as rigid multibead
clusters of particles that interact through pair poten-
tials.32,33,35,36 By fusing a small sticky subparticle on one side
of a targeted monomer into a rigid body, these models produce
reversible directional bonds with controllable coordination.
The geometry and interactions of such composite particles can
be varied to reproduce a wide variety of systems, including
dimerizing fluids,36 self-assembly in DNA-like and collagen-like
peptides,37−39 and phase behavior32 and viscoelasticity of
oligomer systems with hydrogen bonds.33 Since these
approaches leverage pair potentials, they tend to be computa-
tionally efficient and relatively easy to implement in existing
MD codes. Their main drawback is that designing composite
associative groups with desired bond energies and coordination
can be challenging, requiring careful balancing of pairwise
attractions and steric exclusion. This makes composite-particle
strategies less ideal when one wants to systematically vary bond
exchange kinetics and bond coordination.
Reactive force-fields are another popular strategy for

simulating reversible bonding with MD. They employ many-
body potential energies to classically approximate the physics
of dynamic chemical bonding during MD simulations.40,41

Popular reactive models like the Stillinger-Weber, Tersoff,
ReaxFF, COMB, and REBO models have been applied to a
wide variety of metallic, organic, and inorganic molecular and
bulk material systems.42−45 Reactive force-fields are usually
applied to fully atomistic systems, providing a classical bridge
between quantum-electronic physics and atomic dynamics.
However, they can also be employed at coarse-grained scales to
model many-body free energies that depend upon the local
(coarse-grained) atomic environment. This approach has been
used to create coarse-grained reactive models for water in

biomolecular simulations, catalytic systems, and covalent
adaptive networks.46−48

The major limitation of deploying reactive models is their
complicated functional forms, which require fitting many
parameters simultaneously. For this reason, these tools have
only recently begun being applied to simulate associative
interactions in coarse-grained polymer systems. Sciortino et
al.25 recently developed a minimal reactive potential to model
bond-swapping dynamics by incorporating a coordination-
dependent three-body potential that allows complementary
stickers to dimerize and swap bonds. The rate of swapping is
tuneable by adjusting the energy barrier for bond-swapping.
This method has been utilized to study the dynamics of
vitrimers26−28,30 and reversible polymer gels with different
architectures.31 This minimal model is easily implemented and
captures the essential physics of associative bonding, but its
functional form is somewhat limited to forming binary
complexes between two complementary species of sticky
monomers and cannot be easily generalized to more
complicated associative complexes like metal−ligand coordi-
nation.
In this paper, we present a new coarse-grained reactive

model for simulating the dynamics of associative polymer
networks both in equilibrium and during nonequilibrium
processing flows. Our model combines a standard Kremer−
Grest bead−spring model with a customized Tersoff bond
order potential that captures the dynamics of associative bonds
and precisely controls the coordination and kinetics of the
associative complexes. This allows the new model to simulate
coarse-grained representations of associative systems arising
from a diversity of underlying chemical interactions, including
hydrogen bonds, ionic bonds, and adaptive covalent chemistry.
Unlike MC methods for dynamic bonding, which require the
modeler to specify kinetic rates for bond formation and
scission a priori, the bond kinetics of our model emerge
naturally from the reactive potential energy landscape. This
means that our model can make predictions about changes in
associative kinetics as polymer architecture, composition, and
flow are varied.
We demonstrate our model’s ability to capture the self-

assembly and gelation of associative networks with bond
kinetics controlled by a tuneable energy barrier. We examine
two models with different barriers controlling the binary bond-
exchange process and relate their equilibrium viscoelasticity to
changes in the underlying dynamic bond kinetics. For the
degrees of gelation that we consider, we observe a simple
relationship between the network terminal relaxation time and
the so-called “brachiation time”�i.e., the average time for an
unpaired associative site to find an associative partner. Note,
while this study focuses on associations that form binary
complexes, like hydrogen bonds, our reactive model can be
generalized to capture higher coordinations and more complex
reaction kinetics.

■ MODELS AND METHODS
Coarse-Grained Polymer Melts. Our model combines the

standard Kremer−Grest bead−spring model49 with a three-body
Tersoff potential45 that captures the “coarse-grained chemistry” of
associative bonding. The Tersoff functional form can be tuned to
control dynamic bond coordination, directionality, and environment-
dependent bond energies.

All beads have a unitless mass m0 = 1.0 and interact with a purely
repulsive, truncated Lennard−Jones (LJ) potential with an LJ energy,
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distance, and time scale denoted by ϵLJ, σ, and = m( / )LJ 0
2

LJ ,
respectively. All physical simulation quantities are reported in these
reduced LJ units. 4000 linear chains of length N = 40 beads are
bonded by a finitely extensible nonlinear elastic potential.49 Chain
flexibility is set by a bond bending potential Ubend = kθ (1−cos θ),
where θ is the angle between adjacent bonds and kθ = 1.5ϵLJ. Melts are
prepared at constant volume and temperature with a monomer
number density of ρ = 0.85σ−3 and temperature of kBT = 1.0ϵLJ.
These conditions produce polymer melts with an entanglement
segment length Ne ≈ 28 beads,50 an entanglement time τe ≈
1980τLJ,50−52 and a Rouse time = N N( / ) 4041R

0
e e

2
LJ.

Four bivalent associative groups (stickers) are evenly spaced along
chain backbones by replacing regular monomers with associative
“sticky” monomers. The stickers are placed on one of the two central
monomers of each segment with length 10 monomers, producing an
average sticker spacing of Ns ≈ 10 beads. Bivalent stickers form stable
dimers with cohesive energies U that are varied relative to kBT to
model dynamic networks with U/kBT = 3, 6, 9, 12, 15, and 18. This
captures the range of relative cohesive energies typical of hydrogen
bonding networks.

Melts are simulated in LAMMPS and are equilibrated to a
temperature T = 1ϵLJ/kB in the NVT ensemble within a periodic cubic
box.53 The equations of motion are integrated with a time step Δt =
0.005τLJ, and a Langevin thermostat maintains the temperature with a
damping time τT = 100τLJ. The center of mass velocity was
periodically subtracted every 100 timesteps to remove center-of-
mass drift due to Langevin forcing.
Tersoff Potential for Associative Bonds. Associative mono-

mers interact with normal monomers through the LJ potential, but
their interactions with each other are mediated by a Tersoff potential
that forms reversible bivalent bonds. Once two associative monomers
form a bond, a three-body energy penalizes other associative
monomers from forming additional associative bonds with the
bonded pair. We tune this three-body energy to control the preferred
coordination of associative complexes and the kinetic barriers for the
bond exchange process.

The Tersoff bond energy Vij between two neighboring associative
atoms is

= [ + ]V f r f r b f r( ) ( ) ( )ij C ij R ij ij A ij (1)

where f R and fA are, respectively, a repulsive and attractive pair
potential, f C is a smooth cutoff function, and bij is a bond order term
that modifies the bond energy based on the coordination and
geometry of neighboring atoms.45

The potentials f R and fA are the repulsive and attractive terms of a
Morse potential

= =f r Ae Ue( ) r r r
R

2 ( )1 0 (2)

= =f r Be Ue( ) 2r r r
A

( )2 0 (3)

where r0 is the equilibrium bond length, U is the bond cohesive
energy, and α is a curvature parameter that controls the width of the
potential energy well (which implies A = U, B = 2U, λ1 = 2α and λ2 =
α).

The bond order bij is given by the function

= +b (1 )n n n
ij ij

1/2
(4)

with numerical parameters β and n that set how rapidly the bond
energy changes with increasing bond order. The function ζij captures
the species-specific contributions of neighboring atoms k to the bond
order of the ij bond and is given by

= [ ]f r g r r( ) ( )exp ( )m m
ij

k i,j
C ik ijk 3 ij ik

(5)

The contribution of atom k with a cutoff f C on ζij is based on the
angular term g(θijk) that accounts for the bond angle θijk between
bond ij and ik, and the exponential term [ ]r rexp ( )m m

3 ij ik that

captures relative distances between bond ij and ik. In this paper, we
have set g(θijk) = 1 and the exponential term to 1 by making λ3 = 0
and m = 1. This produces an isotropic potential for bivalent bonds
that have no preferred orientation relative to the chain backbone.

An isotropic associative potential is consistent with choosing a
coarse-grained scale for our bead−springs where each sticky bead
does not represent one monomer but a larger segment of chain
containing an associative group. In this limit, the associative potential
of mean-force between two “sticky segments” can be isotropic, even if
the underlying associative bonds are highly directional. Finer-scale
details like directional bonding can be easily introduced by including
the angular energy terms in the potential. These terms can capture a
variety of open bonding geometries like dipolar hydrogen bonds and
metal−ligand coordinations.

In the standard Tersoff model, f C is a universal cutoff function for
both Vij and ζij, defined as

=

<

< < +

> +

f r

r R D

R D r R D

r R D

( )

1,

1
2

1
2

sin
2

,

0,

C

l

m
oooooooo

n
oooooooo

i
k
jjj y

{
zzz

(6)

which decreases from 1 to 0 over an interval 2D centered at the
distance R.

Vij and ζij usually share the same cutoff function; however, we
found this to be too restrictive when attempting to tune dimer and
trimer cohesive energies and energy barriers, so we have defined two
separate cutoff functions for Vij and ζij. Both functions use eq 6 but
have distinct values for R and D that we refer to as (RV, DV) and (Rζ,
Dζ) for Vij and ζij, respectively. We have added these modifications to
the Tersoff potential in LAMMPS MD software, and the relevant
source files are available through our group website.

The black curve in Figure 1d illustrates the two-body bond
potential (Vbond) of a sticker pair as a function of their separation

distance r when the sticky bond strength is 3kBT. Its shape is given by

the Morse potential

= + =V f r f r Ue Ue( ) ( ) 2r r r r
bond R A

2 ( ) ( )0 0 (7)

Figure 1. Schematic illustrations of (a) associative-type and (b)
dissociative-type bond exchange processes, and (c) brachiation
motion of a chain as it breaks a bond at time t1 and forms a new
one at time t2 with a different chain segment. (d) Tersoff interaction
potentials for two-body bond formation (Vbond, black) and three-body
association (V3). The three-body barrier is adjusted to vary the
relative rate of associative-type and dissociative-type bond exchange
processes.
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with an equilibrium bond distance r0 = 1.0σ, well depth U = 3kBT, and
curvature parameter = =U/2 6 1 to control the width of the
potential well, where κ sets the bond stiffness and vibration frequency.

The three-body energy V3 for a third sticker to approach a bonded
pair controls the coordination of associative clusters and the relative
rates of many-body rearrangement processes. For dynamic networks
with bivalent coordination, there are two commonly discussed
rearrangement processes referred to as “associative-type” and
“dissociative-type” bond exchange,9,54,55 as illustrated in Figure 1a,b.
Considering a lone sticker k and a sticky dimer pair ij, an associative-
type exchange involves the formation of an intermediate trimer ijk
that permits k to eject and replace i or j in the dimer. The second
process is a dissociative-type bond exchange, where atom k waits for
the ij dimer to dissociate into unpaired stickers through thermal
activation and then takes one of them as a new partner. The relative
activity of each process is controlled by the barrier Ex for trimer
formation k + ij → ijk, as illustrated in Figure 1d. The Tersoff model
can vary Ex over a wide range of values relative to U to simulate a
variety of associative bond chemistries.

It is important to note that Ex cannot be made arbitrarily large
independent of U. In fact, it cannot exceed the magnitude of the
dimer cohesive energy U. This is because the most expensive barrier
for sticker k to enter into a trimer with ij would be the case where k
completely eliminates the ij bond. However, this also means that the
jk and ik bonds would be destroyed in the trimer state, corresponding
to a trimer energy of zero. Thus, the barrier magnitude is Ex ≤ U.

The barrier Ex can be set and manipulated in many ways, but we
found that the simplest approach was to vary the cutoff range R and
width D for the two different cutoff functions. Using brute-force
parametric analysis, we determined the Tersoff parameters for the two
models with different exchange barriers studied in this paper. The
details of the parametrization process will be discussed in the
following paragraphs. Parameters for both models are listed in Table
1. The parameters of model 1 produce a flat three-body potential

surface, as shown in Figure 1d (Ex = 0). This flat landscape allows
associative bond exchanges to occur whenever a third atom collides
with a bonded pair. Under the same set of bond order parameters,
shrinking the inner cutoff rmin

ζ =(Rζ − Dζ) for ζij allows us to create the
three-body potential in Figure 1d (Ex = U/2) with an asymmetric
barrier of Ex = U/2 for a trimer to form but almost no energy barrier
for an atom to leave. This penalizes the formation of sticky trimers
and makes them short-lived. The relative abundance of dissociative

versus associative exchanges can be tuned by adjusting the height of
the energy barrier.

Our Tersoff model parameters were selected through brute-force
parametric analysis to optimize the shape of the three-body potential
V3. We first set the parameters of the two-body potential Vbond to be
compatible with the bond lengths and vibrational time scales of the
Kremer−Grest model. This is carried out by fixing the equilibrium
distance of a sticky dimer pair r0 = 1.0σ, the curvature parameter α =
6σ−1, and the cutoff distance rmin

V = (RV − DV) = 1.0σ and rmax
V = (RV +

DV) = 1.2σ for Vij. These parameters produce a two-body potential, as
shown in Figure 1d. Once the two-body potential is set, the four
remaining three-body parameters need to be defined: β, n, Rζ, and Dζ.
We fix the outer cutoff distance rmax

ζ = (Rζ + Dζ) = 1.2σ for ζij to be
consistent with rmax

V for Vij. We treat the remaining bond order
parameters β and n, and the inner cutoff distance rmin

ζ = (Rζ − Dζ) for
ζij as optimization variables.

The optimization is performed by repeatedly evaluating the three-
body potential V3 of one associative monomer approaching a rigid
associative dimer as β, n, and rmin

ζ are systematically varied.
Parameterizations are evaluated with a cost function that selects for
specific shapes of the V3 potential. We found that we could adequately
describe the shape of V3 by tracking the energy values associated with
the local maxima, minima, and inflection points of the V3 curve. To
produce the flat V3 function associated with Ex = 0, we defined our
cost function to minimize the absolute difference between any energy
minima, maxima, and inflection points relative to the cohesive energy
U of the two-body potential. This identified the essentially flat
potential plotted in Figure 1d for U = 3kBT.

Extending our parametrizations to general values of U requires
rescaling several model parameters. Increasing the cohesive energy U
makes the two-body potential well deeper and bond vibrations faster,
which could produce instabilities. To maintain a constant vibrational
frequency, we fix the minimum of the two-body potential and rescale
its width by adjusting the curvature parameter α and the outer cutoff
distance rmax

V = (RV + DV) for Vij by a factor u/3 , where u = U/
kBT . Th i s produces =

u
6

( / 3)
1, rm i n

V = 1.0σ , and

= +r 1 0.2V u
max 3

for any values of cohesive energy U. To maintain
the shape of V3 relative to the two-body potential, we similarly rescale
the three-body cutoff parameters rmin

ζ = (Rζ − Dζ) and rmax
ζ = (Rζ +

Dζ). This produces the expressions reported in Table 1 that we have
applied for all of the U studied.
Molecular Analysis. We measure the viscoelastic relaxation

modulus G(t) for reversible networks with the Green−Kubo
method56 by measuring the time correlations of the shear stress in
equilibrium

= ·G t V
k T

t( ) ( ) (0)
B (8)

where V is the volume of the simulation box. We employ the multi-τ
correlator algorithm57 to compute the time correlation function and
average over all three shear components of the stress tensor with α ≠
β.

Chain diffusion is measured by computing the mean-squared
displacement (MSD) of individual monomers g1(t)

49

= [ ]
=

g t
N

r t r( )
1

( ) (0)
i

N

i i1
tot 1

2
tot

(9)

where r t( )i is the position of a monomer at time t. The ensemble
average is taken over all Ntot monomers including both sticky and
nonsticky beads.

We identify associative bonds by measuring the separation between
any two stickers and checking if they are within the inflection distance
of the two-body binding energy, where ∂2Vbond/∂r2 = 0. This
corresponds to the peak restoring force of the bond, which decreases
with further separation. We obtain a large set of bond histories in the
form of Boolean-valued functions si(t), where si(t) = 1 when bond i is

Table 1. Tersoff Potential Parameters for the Two Models
with Different Exchange Barriers Ex for Bivalent Bonding
Studied in This Papera

model Ex = 0 Ex = U/2

Rζ 1 0.193877 u
3

+ u
1 0.05

3

Dζ
u

0.393877
3

u
0.15

3

β 31.449697 31.449697
n 1.451724 1.451724

RV + u
1 0.1

3
+ u

1 0.1
3

DV
u

0.1
3

u
0.1

3

α
u

6 3
u

6 3

aParameters are adjusted relative to u = U/kBT. These parameters can
be divided into two parts: the first four define the shape of the three-
body potential V3; the last three define the shape of the pairwise
potential Vbond between associative particles, which is the same for
both exchange barriers.
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formed and si(t) = 0 when it is broken. The bond lifetime is extracted
by computing a bond lifetime correlation function

=f t s s t( ) (0) ( ) i (10)

averaged over all recorded lifetimes. As shown in Figure 2a for several
systems, these lifetimes follow an exponential decay =f t( ) e t/ s with
a characteristic sticky bond lifetime τs.

The lifetime τs is a common descriptor for bond dynamics in
associative networks, but it is not always the relevant time scale for
network’s viscoelasticity. In order to rearrange the macroscopic
network, bonds must first break on a time scale τs0, and then one of
the lone stickers must make an excursion to find a partner in the
network over a time scale τb. Following the work of Cai et al., we call
this second lifetime of an unpaired sticker the “brachiation time”.58 In
analogy to monkeys swinging through a canopy, the brachiation time
τb measures the time required for a sticker on one chain to jump to a
neighboring branch of the polymer network, as shown in Figure 1c.
Similar to τs, the average brachiation time can also be obtained from
the exponential slope of a correlation function for the unpaired
lifetimes given by (1 − si).

Measuring τs or τb with molecular simulations is nontrivial and
sensitive to the time interval at which molecular configurations are
sampled. Stickers attached to chain backbones move subdiffusively
and frequently backtrack as they diffuse,59 causing frequent
recombination with old partners after breaking a bond. Each breaking
event produces a bare bond lifetime τs0 that is much faster than the
network’s stress relaxation because it is usually followed by a
recombination. As the observation frequency is increased, the number
of recorded recombination events tends to increase, and the measured
value of τs tends to decrease. A more thorough analysis of this process
is given in a recent study by Shanbhag and Ricarte.59

In this study, we measure a renormalized bond lifetime, τs, over
which many recombination events occur until one of the original pairs
finds a new partner and contributes to network relaxation. Note, τb is
measured at high observation frequency, so we assume its value does

not account for the recombination event of stickers. It is the time for
stickers to stay alone or the traveling time for an unpaired sticker to
form a pair after breakage with the previous one. The trajectory
sampling frequency is calibrated by measuring the values of τs and τb
for varying intervals from 2.5 to 1000τLJ for each U/kBT, as shown in
Figure 2b. The measured values of τs and τb decrease with decreasing
Δt until the interval is approximately half the measured relaxation
time. Therefore, we limit our interval for recording system
configurations to no more than half of the measured lifetime. In
practice, this required some calibration runs until we could anticipate
time scales for new systems through observed scaling relationships.

Each time a new associative bond is formed, we label it whether it is
formed through an associative-type or dissociative-type bond
exchange process. A bond formed at time frame t is considered to
have formed through associative-type exchange if it had a different
partner at time frame t − 1. Otherwise, we count it as a dissociative-
type bond exchange process. We track the rates of active associative-
type bond-swapping and passive dissociative-type dimerization per
unpaired population of stickers as Ra and Rd, respectively. Since our
time resolution is finite, this measure sets a lower bound on the rate of
bond exchange since it is possible for associations to break or form in
the time between our observations. However, the scaling of these rates
appears to be robust for varying time intervals of analysis.

■ RESULTS AND DISCUSSION
As a first application of the reactive bead−spring model, we
simulated the equilibrium self-assembly and viscoelasticity of
dynamic polymer networks with binary associative complexes.
By varying U/kBT from 3 to 18, we observe a sol−gel transition
and the development of network viscoelasticity consistent with
experiments for associative polymers. We also perform a
microscopic analysis of the associative bond kinetics for two
model systems with different three-body energy barriers Ex.
This permits us to test how macroscopic viscoelastic properties

Figure 2. (a) Example of the correlation function of sticker lifetime τs for the zero barrier Ex = 0 system at U/kBT = 12, 15, and 18. (b) Example of
the measured τs and τb with varying chosen dumping time interval Δt. The black dashed line is the baseline for us to determine an appropriate Δt,
where =y t1

2
.

Figure 3. (a) Chain cluster size distribution with varying bond strengths. (b) Degree of gelation over increasing bond strengths according to the
mean-field gelation theory.
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depend on associative bond kinetics with all other molecular
features fixed.
Gel Point and Network Formation. The gel point and

the sol−gel transition for the bead−spring dynamic networks
are identified by measuring the equilibrium distribution P(M)
of chain clusters connected by associative bonds for varying U/
kBT, as shown in Figure 3a. Here, M is the number of chains
present in a bonded cluster, and P(M) is the probability that
any chain is part of a cluster of M bonded chains. For bond
strengths below 1kBT, chains form only small clusters, but as U
increases to ∼1kBT, a broad power-law distribution of chain
cluster sizes develops, indicating a critical gel point pc at U/kBT
≈ 1 for this chain architecture and melt density. At the gel
point, we observe a power-law cluster distribution P(M) ∼
M−5/2, consistent with the mean-field theory of gelation.60 For
higher U/kBT, a single peak at large M forms and grows as a
percolating network cluster forms and incorporates an
increasing number of chains into its structure.
The mean-field degree of gelation ϵ measures the proximity

of the network topology to the critically percolated gel
structure. It can be calculated from the equilibrium probability
for a sticky monomer to be unpaired popen as

= =
p p

p

p p

p

(1 )
c

c

open c

c (11)

where p is the probability of one sticky site being bonded, and
pc = 1/( f − 1) is the critical bonding probability for gelation
and is defined by the number of sticky sites per chain f. Figure
3b plots ϵ versus U/kBT for our systems. As can be seen, ϵ = 0
occurs just slightly below U/kBT ∼ 1, consistent with the
critical cluster size distribution that we observed for P(M). As
U/kBT is increased above 1, ϵ increases to 1 by U/kBT ≈ 3,
indicative of a fully formed gel phase,61,62 before saturating
near ϵ = 2. The saturation value corresponds to all stickers
being paired (p = 1) and from plugging pc in eq 11 is given by
ϵ = f − 2. This value depends on the number of associations
per chain, which is f = 4 for our systems, thus limiting ϵ ≤ 2 no
matter how large U/kBT becomes.
Networks can form a variety of features, including dangling

ends and self-loops, which impact the mechanical properties of
the material. The simplest form of network defect is an
intramolecular association in which two stickers on the same
chain form a bond. Measuring the ratio of intramolecular to
intermolecular associations provides a qualitative measure of

the fraction of “defects” in the system. For all our systems, this
fraction is ∼0.05 or less, independent of Ex (as expected). This
small value is consistent with the short lengths of our chains
and the high density of associative groups. Thus, we do not
expect network defects to play a prominent role in the
structure or behavior of the systems that we considered here.
Equilibrium Viscoelasticity and Chain Diffusion. Once

past the gel point, the associative melts form transient
networks that display a plateau in the linear viscoelastic
relaxation modulus G(t). Figure 4a,c shows simulated G(t) for
both models with Ex = 0 (left panels) and Ex = U/2 (right
panels) for several values of U/kBT. Time on the x-axis is
normalized by the Rouse relaxation time τR0 ≈ 4041τLJ for the
“unsticky” melt with no associative monomers. Values for τs
measured from associative bond kinetics are indicated by the
vertical dotted line. At short times, all systems display power-
law stress relaxation consistent with the Rouse dynamics. This
very early time regime is not affected by the presence of
associations. For U/kBT = 3, the sticky relaxation time τs ≪ τR0
and the associations do not alter the Rouse-like form of G(t).
This results in a network relaxation time τN ≈ τR0 for both the
Ex = 0 and Ex = U/2 models. As U/kBT increases, τs increases
and becomes larger than τR0 , suppressing Rouse relaxation and
producing a pronounced plateau in G(t). The plateau extends
to a terminal relaxation time, τN ≈ τs.
The plateau in stress relaxation directly corresponds to the

delayed onset of chain diffusion. Figure 4b,d plots the
monomer MSD g1(t) for chains in the same systems as panels
(a and c). For both models with different Ex, a subdiffusive
plateau in MSD develops and increases as τs increases above
τR0 . The suppression of diffusion is stronger for the system with
Ex = U/2 due to the suppression of associative-type bond-
exchange kinetics with increasing U/kBT. For low U/kBT, the
associations relax rapidly and produce excess dissipation,
slightly altering the Rouse time but not altering the power-law
form of the Rouse relaxation spectrum.
Our systems display terminal relaxation at τN ≈ τs once τs >

τR0 . This is slightly different than the predictions of the sticky
Rouse model, which predicts τRs = τs f 2, where f is the number
of stickers per chain. We attribute this difference to the small
degree of gelation of our systems, which cannot be greater than
ϵ = 2 for our f = 4. In contrast, the predictions of the sticky
Rouse model are made by assuming f ≫ 1 and thus ϵ ≫ 1.
When ϵ is large, chains must collectively dissociate many
stickers in order to relax, producing sticky-Rouse scaling.

Figure 4. Network relaxation modulus of (a) systems with Ex = 0 and (c) systems with Ex = U/2 for varying sticky bond strengths in terms of
simulation LJ time τLJ relative to original Rouse time τR0 . MSD of monomer over time with increasing sticky bond strengths for (b) systems with Ex
= 0 and (d) systems with Ex = U/2. The vertical dotted lines indicate corresponding normalized sticker lifetime τs for different polymer systems
with increasing U/kBT.

Macromolecules pubs.acs.org/Macromolecules Article

https://doi.org/10.1021/acs.macromol.3c02022
Macromolecules 2024, 57, 1403−1413

1408

https://pubs.acs.org/doi/10.1021/acs.macromol.3c02022?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.macromol.3c02022?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.macromol.3c02022?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.macromol.3c02022?fig=fig4&ref=pdf
pubs.acs.org/Macromolecules?ref=pdf
https://doi.org/10.1021/acs.macromol.3c02022?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


However, for systems that stay near the gel point with ϵ ∼ 1,
chains need to dissociate only a few stickers to relax their
conformations. This produces a terminal relaxation time of the
same order as the sticky bond lifetime τs, as has been shown
experimentally.62,63

The data in Figure 4 demonstrate the dramatic impact that
the exchange barrier Ex has on gel transport and viscoelasticity.
The suppression of trimer-mediated associative-type bond
exchange makes gels much more sensitive to the temperature,
resulting in much longer stress plateaus at the same value of U/
kBT. Since these differences are due to a kinetic barrier Ex and
not the cohesive energy U of the associative complexes, the
two systems display identical network plateau moduli GN that
are set by the maximum degree of gelation (ϵ = 2) via the
number of associations per chain. To understand how Ex
impacts the temperature dependence of τs and τN, we next
consider the detailed structure and kinetics of the associative
bonds.
Equilibrium Network Structures and Fluctuations. In

dynamic networks with binary complexes, sticky monomers
can occupy one of two stable energy states: an open state with
an association energy of E1 = 0kBT and a closed state with an
energy of E2 = −U/2 per bonded particle in the binary
complex. In thermal equilibrium, the probability that a sticky
monomer is unbonded popen will obey Boltzmann statistics

=
+

p
e

e e

E k T

E k T E k Topen

/

/ /

1 B

1 B 2 B (12)

independent of the kinetics mediating associative bonding.9

Figure 5a shows the fraction of unpaired stickers versus U/kBT
for both model networks with Ex = 0 (circles) and Ex = U/2
(triangles). Both models show the expected equilibrium
structure, with popen decreasing exponentially with U/kBT
with an exponential slope of −1/2.
While the kinetics of bond exchange does not influence the

average number density of binary complexes, they do alter the
time-correlations in the fluctuations around the average
structure. The impact of Ex on fluctuations can be observed
by plotting the fluctuations of network connections over time,
as shown in Figure 5b,c. Both systems display similar averages
and standard deviations, as expected from statistical mechanics,
but the system with Ex = 0 fluctuates much more rapidly than
the dissociative-type system with Ex = U/2. The correlation
time scale of fluctuations for the Ex = U/2 system is 1 order of
magnitude larger than that of the zero barrier Ex = 0 system for
this U/kBT = 15. This slowdown in network fluctuations is due
to the exponential suppression of the rate of bond-swapping
events due to the finite exchange barrier. These differences in
equilibrium fluctuations are what give rise to the differences in
viscoelasticity and chain mobility, as shown in Figure 4.

Figure 5. (a) Fraction of unpaired stickers popen vs U/kBT for the Ex = 0 and Ex = U/2 systems. The black dashed line indicates an exponential slope
of −1/2. Equilibrium time evolution of chain connectivity (p = 1 − popen) for (b) systems with Ex = 0 and (c) systems with Ex = U/2 at U/kBT =
15. Time is normalized by the Rouse time of the unsticky melt τR0 ≈ 4041τLJ. A fluctuation relaxation time τc is measured for each system from the
exponential decay of the time autocorrelation function of each series. The horizontal black dashed lines are the average values for each trajectory,
and the highlighted regions indicate one standard deviation around the mean.

Figure 6. (a) Sticky bond lifetime τs and brachiation time of lone (unpaired) sticky monomers τb vs U/kBT for systems with different exchange
barriers Ex = 0 and Ex = U/2 in semilog scale with their corresponding slope fit. (b) Expression of sticker lifetimes τs as a function of brachiation
time τb and the fraction of free stickers popen for systems with different exchange barriers Ex = 0 and Ex = U/2. The dashed line is the function of y =
x, which means that the values on the y-axis are equivalent to the values on the x-axis.
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Molecular Kinetics of Associative Complexes. The
kinetics of associative bond rearrangement can be charac-
terized by several interrelated time scales, including the
normalized sticky-bond lifetime τs and the sticker brachiation
time τb. As discussed earlier, these time scales are subtly
related. The lifetime τs captures the time required for sticky
monomers to leave their current complex and form a new one
with a new partner. The brachiation time τb measures the
average time that sticky monomers spend alone, outside of any
complex. These two time scales both contribute to the network
relaxation time τN but display significantly different trends with
the variation of the exchange barrier Ex/kBT. Figure 6a plots τs
and τb versus U/kBT for both models. In both systems, τs
increases exponentially with increasing U/kBT, but at different
rates. For Ex = 0, τs grows with an exponential slope of ∼1/2,
while for Ex = U/2, τs grows more rapidly with an exponential
slope ∼5/6.
Experimental studies have tried to relate exponential trends

in τN or τs to the cohesive energies of the underlying
associative bonds. Our results affirm that even when two
systems have identical associative complexes and cohesive
energies, the form of the exponential relationship between τs
and U/kBT is highly sensitive to the kinetics of higher-order
bond rearrangement processes. Thus, when interpreting
experimental data, it is important to both consider the
cohesive energy of a complex U/kBT, as well as the barriers
for various bond exchange processes like Ex/kBT.
The different scaling behaviors of τs with U/kBT arise

because exchange barrier Ex extends the time that lone stickers
require to form new complexes. This delay is measured by the
“brachiation” times τb, plotted as dashed lines in Figure 6a. For
the model with Ex = 0, τb is constant, showing no change with
increasing U/kBT. This is because there is no barrier to
associative-type bond exchange, so lone stickers can always
easily find new partners by forming a trimer with an existing
associative complex. In contrast, τb for the Ex = U/2 system
shows an exponential increase with U/kBT with an exponential
prefactor of ∼1/3. This is due to Ex exponentially suppressing
the associative-type exchange process as U/kBT increases.
Since new associations can only form when lone stickers

form new complexes, either with another monomer or through
associative-type exchange with an existing dimer, we expect τs
∼ τb. Thus, the different trends in τs versus U/kBT for the two
models are fully captured by the different scalings for the
brachiation time τb. To see why this is so, consider that the
total number of sticky monomers can be partitioned into two
populations, Ns = Nm + Nd, with Nm unpaired stickers
monomers and Nd stickers paired into Nd/2 dimers. Each of
the Nm unpaired stickers will form new complexes over a time

∼ τb. This will refresh the fraction Nm/(Nd/2) of the network
connections. We expect the associative bond relaxation rate to
be τs−1 = 2τb−1Nm/Nd. Given that Nm = Nspopen and Nd = Ns(1 −
popen), we obtain a relationship

=
p

p
e

2

(1 )
U k T

s
b open

open
b

/2 B

(13)

The relation of eq 13 is plotted in Figure 6b and works well
for all simulated systems at all values of U/kBT and Ex/kBT.
Equation 13 shows that trends in τs with U/kBT can be broken
into two contributions. The exponential term eU k T/2 B does not
depend on model kinetics and occurs because associative bond
rearrangement is driven by the population of unpaired stickers
which is exponentially suppressed, as shown in Figure 5a.
Thus, the only way in which the kinetics of associative bond
exchange can impact τs is through changes in the brachiation
time τb for unpaired stickers.
We can relate changes in τb to the relative rates of the

specific bond exchange processes. Figure 7a,b plots rates for
associative-type Ra and dissociative-type Rd bond exchange
events, respectively, for all values of U/kBT and Ex/kBT. As
expected, the associative-type exchange rate Ra is exponentially
suppressed by the exchange barrier Ex, scaling as R e E k T

a
/x B .

This results in a rapid suppression of the associative-type
exchange process for systems with Ex = U/2 but little change in
the rate for systems with Ex = 0. In constrast, Rd displays
similar scaling e U k T/3 B for all systems, independent of Ex.
This is because dissociative-type exchanges are mediated by
unpaired stickers forming bonds with each other, and the
fraction popen only depends on U/kBT in equilibrium (Figure
5a).
For Ex = 0 and large U/kBT, bond rearrangements are

dominated by associative-type exchanges with Ra/Rd ∼ 103 at
the largest U/kBT we consider. This is approaching the
behavior of vitrimer-like covalent adaptive networks. Since
there is no barrier to trimer formation, lone stickers are
annihilated whenever they encounter a dimer, which will
depend on the density and arrangement of stickers on chain
backbones rather than the bond strength. For the Ex = U/2
systems, Ra is suppressed faster than Rd with Ra/Rd ∼ 10−1 at
the highest U/kBT = 18, producing systems dominated by
dissociative-type exchange events, similar to hydrogen bonding
networks. These trends illustrate how the character of bond
exchange kinetics in coordinated associative networks depends
on both U/kBT and Ex/kBT and will generally involve both
types of processes as the temperature is varied.

Figure 7. (a) Rate of associative-type bond exchange and (b) rate of dissociative-type exchange process per lone sticker per τLJ in terms of bond
strengths U/kBT for both models.
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Note, in this study, we have varied U/kBT by varying the
cohesive energy U at fixed kBT. In practice, experiments are
more likely to vary the temperature kBT, which will also alter
the rate of monomer diffusion since diffusion coefficients D ∼
kBT. If sticker recombination is diffusion limited, then τs and τb
can display additional temperature dependence ∼D−1 ∼T−1.
While this is a much weaker effect than the exponential scaling
observed in Figure 6, it could be significant when U/kBT is
small.

■ CONCLUSIONS
We have presented a new reactive coarse-grained model for
simulating associative polymers with precisely coordinated
associative complexes. Our model adds a many-body Tersoff
potential to the standard Kremer-Grest bead−spring model to
capture the precise coordination and kinetics of associative
complex formation at coarse-grained scales. This allows us to
use efficient bead−spring simulations to study the structure
and processing of associative polymers mediated by a wide
variety of dynamic bonding mechanisms and relate the
macroscopic viscoelasticity of networks to the microscopic
kinetics of their associative bonds. This study demonstrated
two models for dynamic networks with binary associative
complexes, reminiscent of hydrogen bonding polymer net-
works. However, the Tersoff potential can be easily extended
to more complex associative interactions.
Our simple model has just two adjustable parameters, a

cohesive energy U/kBT for binary complexes, and an energy
barrier Ex/kBT for bond exchange. By varying Ex/kBT, we can
tune the associative-type/dissociative-type character of the
network kinetics at a fixed network structure. We verified self-
assembly behavior by identifying a gelation transition at U/kBT
≈ 1 and comparing it to the Flory−Stockmayer theory. The
resulting networks developed stress plateaus with terminal
relaxation times τN ∼ τs, consistent with experiments.62,63 By
examining the associative bond kinetics, we found a simple
scaling relationship relating the lifetime τs of associative
complexes to the brachiation time τb that quantifies how long
lone stickers spend unpaired eU k T

s b
/2 B . This relationship

reveals that the exchange barrier Ex/kBT only influences τs
through the brachiation time τb.
Using a many-body potential energy instead of probabilistic

Monte Carlo moves to model associative bonding enables us to
apply our model predictively rather than prescriptively to study
nonequilibrium systems. The rates of associative bond
formation and dissociation emerge naturally from the energy
landscape of the reactive potential and thus do not need to be
prescribed beforehand as is required for Monte Carlo. This
allows us to predict how associative bond kinetics vary with
changes in association placement along chain backbones and
chain architecture. Furthermore, the reactive hamiltonian and
its dynamics remains valid in nonequilibrium conditions.
Studies of the impact of associative interactions on chain
dynamics during nonlinear flow are the subject of our
forthcoming research.
We expect that these models will be a valuable tool for

understanding the dynamics of associative polymer processing
and processability. While associative networks are gaining
popularity as nominally recyclable and reprocessable plastic
materials, in many cases, we still do not know how to reliably
process these materials to begin with. We hope that this model
will provide a new and efficient approach for tackling these

challenges and enabling the adoption of more sustainable and
recyclable plastics.
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